On an enumerative algorithm for solving eigenvalue complementarity problems

نویسندگان

  • Luís M. Fernandes
  • Joaquim Júdice
  • Hanif D. Sherali
  • Maria Antónia Forjaz
چکیده

In this paper, we discuss the solution of linear and quadratic eigenvalue complementarity problems (EiCPs) using an enumerative algorithm of the type introduced by Júdice et al. [1]. Procedures for computing the interval that contains all the eigenvalues of the linear EiCP are first presented. A nonlinear programming (NLP) model for the quadratic EiCP is formulated next, and a necessary and sufficient condition for a stationary point of the NLP to be a solution of the quadratic EiCP is established. An extension of the enumerative algorithm for the quadratic EiCP is also developed, which solves this problem by computing a global minimum for the NLP formulation. Some computational experience is presented to highlight the efficiency and efficacy of the proposed enumerative algorithm for solving linear and quadratic EiCPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the computation of all eigenvalues for the eigenvalue complementarity problem

In this paper, a parametric algorithm is introduced for computing all eigenvalues for two Eigenvalue Complementarity Problems discussed in the literature. The algorithm searches a finite number of nested intervals [ ?̄?, ?̄?] in such a way that, in each iteration, either an eigenvalue is computed in [?̄?, ?̄?] or a certificate of nonexistence of an eigenvalue in [ ?̄?, ?̄?] is provided. A hybrid meth...

متن کامل

Corrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path

In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...

متن کامل

The second-order cone eigenvalue complementarity problem

The Eigenvalue Complementarity Problem (EiCP) differs from the traditional eigenvalue problem in that the primal and dual variables belong to a closed and convex cone K and its dual, respectively, and satisfy a complementarity condition. In this paper we investigate the solution of the SecondOrder Cone EiCP (SOCEiCP) where K is the Lorentz cone. We first show that the SOCEiCP reduces to a speci...

متن کامل

On the Solution of the Inverse Eigenvalue Complementarity Problem

In this paper, we discuss the solution of an Inverse Eigenvalue Complementarity Problem. Two nonlinear formulations are presented for this problem. A necessary and sufficient condition for a stationary point of the first of these formulations to be a solution of the problem is established. On the other hand, for assuring global convergence to a solution of this problem when it exists, an enumer...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2014